på€ãšã¯ãåž°ç¡ä»®èª¬ãæ£åŽãããåŠããæææ°ŽæºãçšããŠæ±ºããéã«çšãããã倿ææã§ãã
ããã§ã¯ãçµ±èšç仮説æ€å®ã®æ¹æ³ãçµ±èšè§£æããŒã«ã§æ±ããããçµæãææãåŠãã«ã€ããŠèå¥ããåºæºãåããããã説æããŠãããŸãã
ç®æ¬¡
- çµ±èšç仮説æ€å®ãšã¯
- på€ã»æææ°Žæºã»ææå·®ã®æå³ãšå ·äœäŸ
- æ€å®ãè¡ãéã®æ³šæç¹
- på€ãžã®æ¹å€ãšåé¡ç¹
- æ€å®ãè¡ããããŒã«
- æ€å®ã«ã€ããŠããããããåŠã¹ãæ¬
- è€æ°ã®ç§åŠçå€æåºæºãæã¡ãèåœæº¢ããæ å ±ç€ŸäŒã«éšãããªãåãæã€
çµ±èšç仮説æ€å®ãšã¯
çµ±èšç仮説æ€å®ãšã¯ãå®éšã調æ»ã«ãã£ãŠåŸãããããŒã¿(æšæ¬)ãããå°çäžã«ååšããå šäººå£(ãããã¯ãæ¥æ¬åœæ°ã»å šââçæ°ãªã©)ã®å šäœ(æ¯éå£)ã®ããŒã¿ãæšæž¬ããŠèª¬æããããšãã§ãããåŠãã«ã€ããŠãçµ±èšåŠçã宿œããããšã«ãã£ãŠæ±ããããpå€ãçšããŠç§åŠçã«å€æãããææ®µã§ãã
ã§ã¯ãã©ã®ãããªå Žé¢ã§çµ±èšç仮説æ€å®ã圹ç«ã€ã®ãã«ã€ããŠãå ·äœäŸãç¹ã亀ããŠèª¬æããããŸããäŸãã°ãæ¥æ¬åœæ°(æ¯éå£)ã®è¥å¹Žå±€ã»é«å¹Žå±€ã®å¹Žéœ¢å·®ã«ããæéèªæžéã«å·®ããããã©ããã調æ»ããããšã«ãªã£ããšããŸãããã
ãã®éãæ¥æ¬åœæ°ã察象ã®èª¿æ»ã ãããšãã£ãŠãåœæ°å šå¡ã«ã¢ã³ã±ãŒãçšçŽãé åžãããšãªããšãã³ã¹ããããŒã¿åæã«å¿ èŠãªæèŠæéã«å€§ããªè² æ ããããããšã¯é¿ããããŸããããã®æã«ãçµ±èšç仮説æ€å®ã®ææ®µãçšãããšãã¢ã³ã±ãŒãçšçŽãžã®å¿ èŠåçè æ°ãå°ãªããŠ200人çšåºŠã«æããããšãã§ããŸãã
ãããŠããã®åŸãããäžéšã®ããŒã¿(æšæ¬)ãããæ¥æ¬åœæ°ã«ã€ããŠãåæ§ã«èª¬æããããšãã§ãããã倿ããããšãã§ããã®ã§ãããã®ããã調æ»ãå®éšã®å Žé¢ã§ã¯å¿ èŠäžå¯æ¬ ãªç§åŠçå€æã®ææ®µãšãããŸãã
çµ±èšç仮説æ€å®ã¯ãäž»ã«ïŒã€ã®æ§æèŠçŽ ã§æç«ããŠããŸãã以äžã§3ã€ã®æ§æèŠçŽ ã«ã€ããŠå®éã«åæãããæ®µéãèžãŸããå ·äœçã«èª¬æããŠåããŸãã
i.ãïŒã€ã®ä»®èª¬(åž°ç¡ã»å¯Ÿç«) ãç«ãŠãã
ã¯ããã«ãæ°ãã«ç ç©¶ãããéã«ãæããã«ãããäºè±¡ãäžããŠä»®èª¬ãç«ãŠãŸãããã
ä»åã¯ãæ¥æ¬åœæ°ã®è¥å¹Žå±€ãããé«å¹Žå±€ã®æ¹ãïŒã¶æéã®èªæžéãå€ããšãã説ãç«ãŠããšããŸãããã®ä»®èª¬ã¯ãè¥å¹Žå±€ã»é«å¹Žå±€ã®ïŒã€ã®çŸ€éã«èªæžéã®å·®ãååšããããšã䞻匵ãã â察ç«ä»®èª¬âãšåŒã³ãŸãã
察ããŠãããïŒã€ã®ä»®èª¬ã¯åž°ç¡ä»®èª¬ã§ãããããã¯æ¥æ¬åœæ°ã®è¥å¹Žå±€ã»é«å¹Žå±€ã®ïŒã€ã®çŸ€éã«ã¯èªæžéã®å·®ãååšããªãçããçµæã§ããããšã䞻匵ããŸãã
ii.ãåž°ç¡ä»®èª¬ãçã§ããããšãåæãšããæ€å®çµ±èšéãèšç®ããã
å®éã«çµ±èšåŠçãè¡ãéã«ã¯ãæ±ããããšããŠããäºè±¡(ä»åã®å Žåã¯è¥å¹Žå±€ã»é«å¹Žå±€ã®èªæžé)éã®é¢ããã¯ãåž°ç¡ä»®èª¬ã§ããããšãåæã«èããŸãã
iii. ãæææ°Žæºã«ããçµæã®å€æã
æåŸã«ãçµ±èšåæåŠçã«ãã£ãŠæ±ããããpå€ã倿ææãšããæææ°ŽæºãææšãšããŠçšããŠãåž°ç¡ä»®èª¬(è¥å¹Žå±€ã»é«å¹Žå±€ã®èªæžéã«ã¯å·®ããªã)ãæ£åŽãã察ç«ä»®èª¬(è¥å¹Žå±€ã»é«å¹Žå±€ã®èªæžéã«å·®ããã)ãæ¡çšãããåŠãã®å€æãããæµãã«ãªããŸãã
på€ã»æææ°Žæºã»ææå·®ã®æå³ãšå ·äœäŸ
ã§ã¯ãçµ±èšåŠãè§Šããéã«å¿ ãç®ã«ãããããšã«ãªãå°éçšèªãpå€(P-value)ããæææ°Žæº(significance level)ããææå·®(significant difference)ãã®æå³ã«ã€ããŠãäžèšã§åãäžããå ·äœäŸãåã³çšããªãã説æããããŸãã
æ¥æ¬äººã®è¥å¹Žå±€ã»é«å¹Žå±€ã«ããæéèªæžéã«å·®ãããã®ããæ€èšŒããããã«ãã¢ã³ã±ãŒã調æ»ã宿œãã300人åã®ããŒã¿ãéããããšãã§ãããšããŸãããããããã®ããŒã¿ãçšããŠãè¥å¹Žå±€ã»é«å¹Žå±€ã®çŸ€éæ¯èŒãè¡ããããããä»åã¯å¯Ÿå¿ã®ãªãtæ€å®ã宿œãããšããŸãã
ããããã®çŸ€éã®å¹³åå€ãæšæºåå·®ã¯ãè¥å¹Žå±€(M= 2.37, SD= 1.41)ãé«å¹Žå±€(M= 4.71, SD= 0.57)ã§ãã£ããšããŸãããããŠãtæ€å®ã®çµæã(t(298)= 2.17, p< .05)ã®çµæãåŸããããšããŸãããã
ãã®æã«tæ€å®ã®çµæãšããŠãæ±ãããã(t(298)= 2.17, p< .05)ã«æ³šç®ããŠãã ããããã®èšè¿°ã«å«ãŸããŠãã(p< .05)ãpå€ã§ãããæææ°Žæºãæå³ããŠããŸãã
på€ãšã¯ã(.000ã1)ã®éã§ç®åºãããå€ã§ãåž°ç¡ä»®èª¬ãæ£åŽãããåŠãã®å€æåºæºãšããŠçšããããæ°å€ã®ããšãæããŠããŸãã
æææ°Žæºãšã¯ãç®åºãããpå€ãçšããŠããã®åæçµæãææãªãã®ã§ããã倿ããåºæºã§ãããäžè¬çã«på€ã(.05)ãäžåã£ãŠãããã®ãææã§ãããšå€æãããŸãã
ãã®çµæã«é¢ããŠæŽãªãèšè¿°ãããéã«ã¯ã決ãŸãæå¥ãšããŠãè¥å¹Žå±€ãããé«å¹Žå±€ãããèªæžéãå€ãææå·®ã瀺ããããããªã©ãšèšè¿°ãããããšãå€ãã§ããææå·®ãšã¯ããÏ2æ€å®ãããtæ€å®ããã忣åæãã®åæçµæã®èšè¿°ã§çšããããããŒã¯ãŒãã§ãã
äžèšã§ã¯ããpå€ããæææ°Žæºããææå·®ãã«ã€ããŠãè«æã«èšè¿°ããã圢åŒãå ·äœäŸãšããŠæããç°¡æçãªèª¬æãããããŸãããããã§ã¯ã以äžã®é ç®ã«ãŠãpå€ããæææ°Žæºããææå·®ãã®è©³çްã«ã€ããŠèª¬æããããŸãã
â»ãããã®èª¬æãããéã«çšããå ·äœäŸã¯å®éã«èª¿æ»ãããå°ãåºãããçµæã§ã¯ãããŸããããããŸã§ãpå€ããæææ°Žæºããææå·®ããã»ãªããã説æããããã«ãåãäžããç°¡æçãªäŸæã§ãã
på€ã®å®çŸ©
på€ãšã¯ãæ±ããããåæçµæãåž°ç¡ä»®èª¬ã§ãã確çã衚èšããæ°å€ã§ãã
å€ãã®å¿çç ç©¶ã§ã¯ãpå€ã5%ãäžåã(p< .05)å Žåã¯ãåž°ç¡ä»®èª¬ãçºçããã確çã¯5%(察ç«ä»®èª¬çºç確çã¯95%)ã§ããããã®ç ç©¶ã«ãŠå¯Ÿç«ä»®èª¬ãçºçããããšã¯å¶ç¶ã§ã¯ãªããšå€æãããåž°ç¡ä»®èª¬ãæ£åŽãã察ç«ä»®èª¬ãæ¡æãããããšãäžè¬çã§ãã
ãŸããpå€ã5%ãè¶ ãããšããŠãã10%ãäžåãå Žå(p< 0.1)ã¯ãææåŸåããããšè¡šèšãããããšããããŸãã
æææ°Žæºã®å®çŸ©
æææ°Žæºãšã¯ãçµ±èšç仮説æ€å®ã宿œããæ±ããããpå€ãçšããŠåž°ç¡ä»®èª¬ãæ£åŽãããåŠãã倿ããåºæºã®ããšãæããŸãã
äžèšã®på€ã®å®çŸ©ã§ãåãäžããŸããããäžè¬çã«ãpå€ã5%ãäžåããšåž°ç¡ä»®èª¬ã¯æ£åŽããããšãã§ãããšå€æãããŸãã
ãŸããæææ°Žæºã®å€æåºæºã¯5%ã1%ã0.1%ãšçްãã现ååãããŠããŸãããããã®å€æåºæºããè«æãžæ¿å ¥ãããå³ã«é »åºããã¡ãªèšå·ãç°¡æçã«çºããå³ã以äžã«èŒããŠããã®ã§ãåèã«ããŠã¿ãŠãã ããã
ææå·®ããã»ææå·®ãªãã®æå³
è«æãèªãã§ããéã«ãçµæã®é ç®ã§ãææå·®ããã£ãããææå·®ããªãã£ãããšãã£ãæèãèŠãããããšã¯ãããŸãã§ããããããã®ãææå·®ãã®ããã»ãªããšã¯ãäžäœäœãæå³ããŠããããããã®è§£éã®ä»æ¹ã説æããŸãã
ããã¯ãäºè±¡éã®å¹³åå€ã«ãçµ±èšåŠçã«æå³ã®ããå·®ãããããåŠãã説æããŠãããšã€ã¡ãŒãžãããŠãã ããããããŠããã®çµ±èšåŠçã«æå³ã®ããå·®ããããšããå€æåºæºã¯äžèšã§è§Šããæææ°Žæºã5%æªæºãåŠãã§ãã
ããã¯ãäºè±¡éã«çµ±èšåŠçã«æå³ã®ããå·®ã®ååšã®æç¡ãæ€èšãããÏ2æ€å®ãããtæ€å®ããããã¯ã忣åæãã§æ±ããããçµæã説æããéã«çšããããããŒã¯ãŒãã§ãã
äžæ¹ã§ãäºè±¡éã®å·®ã®æç¡ãæ€èšããç®ç以å€ã§çšããããçµ±èšåææ³ã§ãããçžé¢åæãããéååž°åæããªã©ã§ã¯ãçµ±èšåŠçã«æå³ã®ããé¢ä¿ãæã€ãã€ãŸãããææãªé¢ä¿ãããã»ãªãããšãã£ã説ææãèšè¿°ããå¿ èŠããããŸãã
æ€å®ãè¡ãéã®æ³šæç¹
çµ±èšåæãè¡ãéã«çšããããŒã¿ã«é¢ããŠæ³šæãæã£ãŠããã ããããã€ã³ãã2ã€ãããŸãã
1ã€ç®ã¯ãããŒã¿ã«å€©äºå¹æ(ceiling effect)ãåºå¹æ(floor effect)ãçºçããŠããªããåŠãã§ãã
倩äºå¹æãåºå¹æãšã¯ã1ããŒã¿ã®å¹³åå€Â±æšæºåå·®ã®æ°å€ãæé«å€ã»æäœå€ãçªãæããŠããç¶æ ãæããŠããŸããæé«å€ãäžåãå Žåã¯å€©äºå¹æãæäœå€ãäžåãå Žåã¯åºå¹æãçºçããŠããŸãã
ãããã®çŸè±¡ãçºçããŠããããŒã¿ãçšããŠåæãè¡ããšåŸã»ã©äœãããã®åŒå®³ãçãŸããå¯èœæ§ããããŸãã®ã§ãåæéå§åã«èšè¿°çµ±èšã§ããŒã¿ã®ç¶æ ã確èªããŠããåæã«åãæãã£ãæ¹ãè¯ããšãããŸãã
2ã€ç®ã¯ãå€ãå€ã®ååšã§ãã
å€ãå€ãšã¯ããŒã¿åéãããéã«äœãããã®äžå ·åãªã©ã§çºçãããä»ã®ããŒã¿ãšæ¯ã¹ããšç°åžžå€ãšãåããçªé£ããæ°å€ãæ°å°ãªãçŽã蟌ããã®ã§ãã
å€ãå€ãæ®ããç¶æ ã§åæãç¶è¡ãããšãä»ã®ããŒã¿ã®å¹³åå€ãå€ãå€ã«åŒã£åŒµãããŠããŸããä»åŸã®åæã«äœãããã®æ¯éãæ¥ãå¯èœæ§ããããããèšè¿°çµ±èšã宿œããçºèŠããéã¯é€å€ããããã«ããŠãã ããã
第äžçš®ã®èª€ã
第äžçš®ã®èª€ã(type I error)ãšã¯ãæ¬æ¥ã§ããã°äºè±¡éã«ææå·®(ææãªé¢ä¿)ããªãã®ã«ãé¢ããããpå€ã5%ãäžåã£ãŠããããšã§ãåž°ç¡ä»®èª¬ãæ£åŽãã察ç«ä»®èª¬ãæ¡çšããŠããŸã誀ã£ã倿ãããŠããŸãããšãæããŠããŸããåœéœæ§(false positive)ãšãåŒã³ãŸãã
第äºçš®ã®èª€ã
第äºçš®ã®èª€ã(type II error)ãšã¯ãæ¬æ¥ã§ããã°äºè±¡éã«ææå·®(ææãªé¢ä¿)ãããã®ã«ãé¢ããããpå€ã5%ãäžåã£ãŠããããšãããåž°ç¡ä»®èª¬ãæ¡æãã察ç«ä»®èª¬ã誀ãã§ãããšå€æããŠããŸãããšãæããŠããŸããåœé°æ§(false negative)ãšãåŒã³ãŸãã
på€ãžã®æ¹å€ãšåé¡ç¹
på€ã5%æªæºãšããæææ°Žæºããã¯ãããŠå ¬ã®å Žã§äœ¿çšãããã®ã¯ãFisherã®Statistical Methods for Research Workers(1925)ã§ãããšãããŠããŸãã
åœæãFisherãæææ°Žæºã5%æªæºã«æ±ºããçç±ã¯äŸ¿å©ãå人çãªå¥œã¿ã§ãããæšæºå差±2ã®ç¯ç(çŽ95%)ããæãåºãå Žåã«ã¯ææã§ãããšå€æããã°è¯ããšèããŠããããã§ãç§åŠçæ ¹æ ã«åºã¥ããŠåå³ãããæ«ã«å°ãåºãããæææ°Žæºã§ã¯ãªãã£ããšããããŠããŸãã
Fisherã®äž»åŒµãæ°å€ãã®åŠè ãæ€èšŒãéããçµæã瀟äŒçã«èµ·ããããæ§ã ãªåºæ¥äºã»äºè±¡ã«å¯ŸããŠæææ°Žæº5%説ã¯åŠ¥åœã§ãããšçµè«ã¥ããããŸãããããã®åŸã«ãpå€ã«å¯ŸããæççãªèŠè§£ã¯æ®ã£ãŠããŸãã
çŸç¶ãpå€ãæææ°Žæºãçšãã倿ãããéã«ãäžèšã§ãåãäžããã第äžçš®ã®èª€ãã»ç¬¬äºçš®ã®èª€ããèµ·ããå¯èœæ§ãåŠããããšã¯ã§ããŸããã
å®éãpå€ã¯ããŒã¿æ°ã«å€§ããäœçšãããçµ±èšåæãããéã«ããŒã¿ãå€ãã«è¶ããããšã¯ãªãã§ãããããŒã¿æ°ãå€ããªãã°ãªãçšã«åæçµæã§å°ãåºãããpå€ãå°ãããªã£ãŠããã第äžçš®ã®èª€ããçºçãããããªããšèããããŠããŸãã
ãã®ãããpå€ä»¥å€ã«åæçµæã倿ããåºæºãå¿ èŠã§ãããšããã95%ä¿¡çšåºéã®èšè¿°ãã广é(Ï2å€ã»tå€ãFå€ãβããªã©)ãçšããŠææãåŠãã®å€æããã¹ãã§ãããšãã£ãèãæ¹ããããŠããŸãã
æ€å®ãè¡ããããŒã«
ããã§ã¯ãå®éã«på€ãäŒŽãæ§ã ãªçµ±èšæ³ã宿œããããšãã§ããçµ±èšããŒã«ã玹ä»ããããŸãã
SPSS
SPSSãšã¯ãIBM瀟ãåãæ±ã£ãŠããçµ±èšè§£æããŒã«ã§ããæ¬èšäºäžã§åãäžããè€æ°ã®åææ³ã¯ãã¡ããã®ããšãå¿çåŠç ç©¶ã«å¿ èŠãªçµ±èšåææ³ã«å¹ åºã察å¿ããŠããŸãã
ãŸãAmosãå°å ¥ããããšã«ãã£ãŠããå ±åæ£æ§é åæãã«ã察å¿ããããšãå¯èœã§ãã
HAD
HADãšã¯ãé¢è¥¿åŠé¢å€§åŠã®ç€ŸäŒåŠéšã®æž æ°Žè£å£«ææãäœæãããExcelãçšããç¡æã®å¿ççµ±èšããŒã«ã§ãã
SPSSãšåæ§ã«ãæ¬èšäºäžã§åãäžããè€æ°ã®åææ³ã«ã察å¿ããŠãããåæã宿œããã ãã§ç°¡æçãªè¡šãå³ãšå ±ã«çµæã衚瀺ãããã®ã§ãã¬ããŒãã»è«æäœæã«ãã£ãŠãããªããŒã«ã§ãã
ãŸããå ±åæ£æ§é åæã«ã察å¿(Windowsã®ã¿)ããŠããã®ã§ãç¡æã§çµ±èšè§£æããŒã«ã䜿ããããšãã£ã人ã«ãªã¹ã¹ã¡ã§ãã
æ€å®ã«ã€ããŠããããããåŠã¹ãæ¬
på€ã¯ãã¡ããã®ããšãæ§ã ãªå¿ççµ±èšæ³ã«ã€ããŠåããããã説æãããŠããæ¬ã玹ä»ããŸãã
è€æ°ã®ç§åŠçå€æåºæºãæã¡ãèåœæº¢ããæ å ±ç€ŸäŒã«éšãããªãåãæã€
æ°ããªç ç©¶ãè¡ãããšããéã«ã¯ãæ§ã ãªæ å ±ã«è§ŠããŠãããã°ãªããŸããã
ãã®éã«è§Šããããããã»ã¡ãã£ã¢ã»æžç±ãã¯ãããšããæ å ±å šãŠãæ£è§£ãçå®ãå°æããŠãããšã¯æèšã§ããŸããã
å¿çåŠãé¢ä¿ãããã®ã§ã誀ã£ãç¥èãäžéã«æµéããŠãããã®ããããŸããäŸãã°ãè¡æ¶²åãæ§æ Œã«åœ±é¿ãåãŒããšãã£ããã®ã代衚äŸãšããŠæããããŸãããã®ééã£ãç¥èã«ã¯ãããŒãã 广(誰ããã«åœãŠã¯ãŸããããåŸåã®ããäºè±¡)ã®å¿çãã¯ããã¯ã䜿ãããŠããã®ã§ãæ¬åœã«åœãŠã¯ãŸã£ãŠãããšä¿¡ããŠããŸã人ãããããã§ãã
ãã®èª€ã£ãæ å ±ãä¿¡ããå®éã«ãè¡æ¶²åãç¬ç«å€æ°ãšããŠåãæ±ãå®éšèšç»ãç«ãŠãããåæã宿œãããšããŠããè¡æ¶²åã«ãã£ãŠæ§æ Œãå€ããããšã¯ãªãã®ã§ãéææã®å®éšçµæãå°ãåºãããŠéæ¹ã«æ®ããããšã¯é¿ããã°ãªããŸããã
å¿çåŠã®äžçã«éãããæ£èª€æ å ±æº¢ããçŸä»£ç€ŸäŒã«ãããŠãæ°å€ãã®èª€ã£ãæ å ±ã«å®¹æãç¿»åŒãããªãåã身ã«ã€ããããã®ããã«ã¯ãæ å ±ã®åºå žæºãæ¢ãæ±ããåã ãã§ãªããæ å ±ãæ£ããèªã¿è§£ãèœåã身ã«ä»ããä»ãããŸããããã®æã«ãçµ±èšåŠã®ç¥èã¯å€§å€åœ¹ç«ã€ããšã§ãããã
åèæç®
å€§ä¹ ä¿è¡äºã»å²¡ç°è¬ä»ãäŒããããã®å¿ççµ±èšã(2012)åèæžæ¿
åç°åå²ã倧åŠ4幎éã®çµ±èšåŠã10幎éã§ãã£ãšåŠã¹ãã(2019)è§å·æåº«
çœäºç¥æµ©èãçµ±èšå«ãã®ããã®å¿ççµ±èšã®æ¬ã(2017) åµå 瀟